7(495)968-26-38
Проектируемый проезд №4062,
дом 6

Весь спектр услуг
по техническому осмотру
Наполнение
вторая строка
Ред. блок
Тестовое наполнение
 
 
  •  
  •  
  •  
  •  

Вот мешок с дорожными знаками сосчитай сколько каких знаков в мешке


Информатика 3 класс (стр. 2 )

Тем не менее координаты можно сложить в мешок. Для этого понадобятся бусины двух типов: бусина одного типа будет обозначать один шаг влево, а бусина другого — один шаг вниз. Какими именно будут бусины — вопрос договорённости. Например, квадратными и круглыми или синими и зелёными. А могут быть карточки, на которых написано «Влево» и «Вниз». Таким образом, каждой клетке на листе можно сопоставить мешок, в котором будет некоторое количество бусин «Влево» и некоторое количество бусин «Вниз».

Построив одномерную таблицу для такого мешка, получим пару чисел, аналогичную координатам: ведь в таблице для каждого числа ясно, количество каких именно карточек оно обозначает. Получится так называемый вектор. Конечно, вектор может иметь не только два, но и больше параметров (соответствующая цепочка чисел может быть длиннее). И в нашем мешке могут тоже лежать бусины многих типов. В отличие от множества в мешке (мультимножестве) может быть несколько объектов одного типа. Значит, в таблице для мешка будут не только единицы и нули.

С понятия «вектор» начинается изучение науки, которую называют аналитической геометрией. Данное понятие лежит в фундаменте физики и многих разделов математики.

Тема нового урока — двумерные таблицы для мешков. С научной точки зрения двумерные таблицы — это следующая по сложности структура, набор векторов. Конечно, не нужно сейчас нагружать детей этой сложной терминологией. Достаточно того, что они научатся сортировать и классифицировать элементы мешка по двум признакам и аккуратно заполнять таблицу.

Решение задач 14—18 из учебника

Задача 14. В мешке G довольно много фруктов. Если кто-то из детей запутается, посоветуйте ему как-то помечать посчитанные фигурки. Именно для этого мы поместили в рабочую тетрадь копию мешка. Итак, выберем некоторую клетку в таблице и будем искать в мешке все фрукты соответствующего вида и цвета. При этом будем помечать посчитанные фрукты в мешке — обводить, вычёркивать и т. п. Если по окончании заполнения таблицы не все фигурки окажутся помеченными, можно будет легко найти, какая клетка в таблице заполнена неверно, и исправить ошибку. Возможно, дети в ходе решения будут использовать и другие стратегии. Например, будут считать сначала все жёлтые фрукты — яблоки, а потом — груши.

Ответ:

Задача 15. Вначале требуется заполнить четыре (одномерные) таблицы, т. е. классифицировать лица поочерёдно по четырём различным признакам — виду носа, виду рта, виду глаз и виду бровей. Перед сильным ребёнком можно поставить вопрос, как проверить правильность заполнения всех четырёх таблиц: сумма чисел в каждой таблице должна быть одной и той же. Попросите ученика объяснить, почему так получается. Действительно, по какому бы (одному) признаку мы ни классифицировали лица, в сумме мы должны получить то количество фигурок, которое лежит в мешке.

Решение задачи (одномерные таблицы):

Вторая часть задачи — заполнение двумерных таблиц — технически более сложная. Трудность, во-первых, состоит в том, что дети должны помнить одновременно два признака и полностью отключиться от остальных. Во-вторых, признаки хотя и осмысленные, но однотипные (палочки и закорючки), поэтому легко путаются, а предметы в мешке при этом не различаются ни формой, ни размером, ни цветом. В-третьих, одновременно с поиском лиц ученик должен их ещё и считать. Задание специально составлено таким образом, чтобы каждый ребёнок почувствовал необходимость выработки собственной системы работы. Если кто-то начал запутываться, можно помочь ему и обсудить, какую именно систему он использует для работы, или выработать такую систему в ходе совместного обсуждения. В зависимости от того, к чему будет склоняться ученик, мы предлагаем вам один из трёх возможных подходов.

Первый подход состоит в том, чтобы заполнять клетки таблицы поочерёдно, т. е. искать каждый раз все те лица, в которых присутствуют два признака, соответствующие этой клетке. Основные проблемы при такой работе:

1. Соскальзывание с эталона — при переводе внимания с таблицы на объекты мешка ребёнок может забывать, какие именно признаки он ищет в данный момент, и переключаться на другие.

2. Сложность одновременно искать лица и считать их, даже пользуясь различными пометками.

Для устранения первой проблемы можно использовать шаблон: нарисовать на черновике глаза и нос, которые он ищет, и периодически поглядывать на этот образец. Для устранения второй проблемы можно использовать пометки: сначала найти и пометить все лица, а потом их сосчитать. Необходимо только помнить: пометки должны быть такие, чтобы дети не путали лица, помеченные на текущем и предыдущих этапах. Для этого можно использовать разные цвета пометок, или, наоборот, работать простым карандашом и стирать пометки после каждого этапа работы.

Второй подход состоит в том, чтобы поочередно брать лица из мешка и соотносить их с определённой клеткой в таблице. Например, лицо в левом нижнем углу имеет рот прямой чёрточкой и нахмуренные брови, значит, оно должно находиться в верхней клетке самого левого столбца второй таблицы. Ставим в этой клетке палочку карандашом и соответствующее лицо в мешке тоже помечаем карандашом (например, обводим). Когда все лица в мешке окажутся помеченными, подсчитаем палочки в каждой клетке таблицы и заменим их на полученные числа.

Третий подход — скопировать страничку учебника, вырезать все фигурки из мешка и рассортировать их на столе по необходимым признакам. Подсчитав, сколько фигурок оказалось в каждой кучке, заполнить таблицу. Этот способ самый простой. Не стоит его предлагать детям, которые хоть как-то справляются без него. Но если вы видите, что ребёнок никак не может сосредоточиться (внимание рассеивается), предложите ему этот способ и выдайте копию странички.

Выработав вместе с ребёнком систему работы, подходите к нему время от времени и обсуждайте снова, что он делает. После того как все дети определились со стратегией и начали работать, возможно, их начнут посещать идеи о соотношении одномерных и двумерных таблиц и о том, как это можно использовать при решении и проверке. Например, многие заметят, что лиц с одним из видов глаз в мешке нет. Кто-то сделает совершенно справедливый вывод, что комбинации этого вида глаз со всеми формами носа тем более отсутствуют, поэтому во всех строках последнего столбца левой двумерной таблицы можно сразу написать нули. Можно и дальше продолжить обсуждение соотношения одномерных и двумерных таблиц в ходе проверки. Например, спросить ребят: «Где в левой двумерной таблице находятся все лица с округлым носом?» (Ясное дело, в верхней строке.) «А сколько у нас всего лиц с круглым носом?» Эту информацию можно найти в первой одномерной таблице — таких лиц всего 15. Вывод: сумма всех чисел в верхней строке должна быть равна 15. Если у ученика это условие выполняется, он может переходить ко второй строке, если нет, пусть ищет ошибку в клетках верхней строки. После проверки по строкам можно провести проверку по столбцам на основании информации третьей одномерной таблицы. Если всё сходится, это гарантирует правильность заполнения двумерной таблицы (конечно, при условии, что одномерные таблицы перед этим были заполнены верно). Таким образом, отпадает необходимость фронтальной проверки. Напоминаем, что самая полезная проверка — это проверка, в ходе которой ребёнок самостоятельно нашёл свои ошибки.

Решение задачи (двумерные таблицы):  

Задача 16. Наверняка наибольшее число ошибок при решении этой задачи будет связано с заливкой фона, который на картинке состоит из трёх областей, две из которых относительно небольшие, а третья занимает весь оставшийся фон.

Обсудите с ребятами, где они могли видеть этот знак. Можно дать задание поискать дома упаковки с таким экологическим знаком и принести их на следующий урок. Можно также попросить ребят подумать дома, зачем на товарах рисуют подобный знак, хорошо это или плохо, что товар помечен этим знаком, и т. п.

Ответ: в этой картинке девять областей (каждая из трёх стрелок содержит две области и ещё три области фона).

Задача 17 (необязательная). Структуры, аналогичные цепочкам и мешкам, можно встретить где угодно, и в том числе, конечно, в сказках. Даже житейских знаний ребят окажется достаточно, чтобы выполнить данную задачу. Тем не менее перед решением задачи каждый из детей должен уяснить для себя, что ряд домочадцев, тянущих репку, — это цепочка, первая бусина которой — дедка, а последняя — мышка. В этой задаче дети повторяют все понятия, связанные с порядком бусин в цепочке, в том числе понятия, касающиеся частичного порядка (например, «вторая перед Жучкой»). Обратите внимание, что в тех утверждениях, где используются понятия «раньше», «позже», может быть несколько верных решений.

Ответ:

Дедка тянет из земли репку.

Следующая после бабки — внучка.

Предыдущая перед мышкой — кошка.

Последней тянет мышка.

Вторая перед Жучкой — бабка.

Третья после внучки — мышка.

Жучка тянет репку раньше кошки (мышки).

Мышка тянет репку позже кошки (Жучки, внучки, бабки, дедки).

Задача 18 (необязательная). Различные пары слов в мешках не связаны между собой, поэтому, начав с любой пары слов, ученик дойдёт до правильного решения. Любое частичное решение может быть продолжено до полного, любая пара сопоставленных слов является частью окончательного решения. При таком произвольном построении не возникает тупиков. Далеко не все задачи курса обладают таким свойством автономности каждой части решения. Задачи бывают и более запутанными, при сопоставлении слов мы могли бы отождествить два слова, заполнив пробелы, а потом оказалось бы, что это отождествление не удаётся продолжить до решения всей задачи, потому что другое слово с пробелами осталось невостребованным. Задачи с подобными тупиками появятся в курсе позднее.

Ответ: слова МОЛОТОК и МОЛОКО.

Урок «Словарный порядок. Дефис и апостроф»

Словарный порядок

На уроках русского языка ребята уже пользовались словарями. И в нашем курсе детям приходилось работать с цепочками слов, расположенными в словарном порядке. Например, во 2 классе ребята решали большую серию задач на работу с учебным словарём. Ни в одной из этих задач не требовалось расположить слова в словарном порядке, тем не менее дети к настоящему моменту приобрели некий опыт, который на этом уроке им предстоит систематизировать и обобщить.

В первой части листа определений содержится общее описание правила словарного порядка. Первый абзац наверняка будет понятен практически всем. Второй и третий абзацы нужно обсудить подробно. При этом можно опираться на пример словарика справа. Так, во время обсуждения можно спросить детей, почему слово ДОЛ идёт раньше слова ДОЛГ, почему слово ДОЛГИЙ идёт раньше слова ДОЛГОВЕЧНОСТЬ и т. д. В каждом из случаев ребёнок должен пояснить, на какое правило из листа определения он опирается и по какой букве идёт упорядочение.

Дальше в задачах цепочку слов, упорядоченных в словарном порядке, мы будем называть словарём.

Дефис и апостроф

Может показаться странным, что мы вводим внутрисловные знаки после того, как дети выполнили проект «Знакомство с русским текстом» (в курсе 2 класса). На самом деле этот лист определений обобщает и систематизирует тот опыт и ту информацию, которые ребёнок уже получил. В традиционных школьных курсах вопрос о статусе дефиса и апострофа обходят стороной. Полагаем, что знание этих знаков и умение их использовать — необходимый элемент языковой культуры. Мы также считаем необходимым, чтобы ребёнок твёрдо уяснил себе не только чисто графические различия между дефисом и тире, но и различие в их статусе: если тире относится к знакам препинания, то дефис по своим функциям скорее похож на букву, чем на знак препинания. Действительно, если знаки препинания ставят между словами и предложениями, то дефис существует только внутри слова. Поэтому его и называют внутрисловным знаком.

Графически апостроф — это запятая вверху строки, содержательно не имеющая ничего общего ни с запятой, ни с каким-либо другим знаком препинания. Так же как и дефис, апостроф существует только внутри слова, выполняя функции буквы. Апостроф чаще встречается в иностранных словах (именах собственных). Одно время он использовался в русском языке вместо твёрдого знака, но об этом говорить детям пока нет необходимости (конечно, если никто из них сам не вспомнит, что у него на доме написано «ПОД’ЕЗД № 2»). Встречаются и «авторские» использования апострофа, например когда «изоб’ажают ка’тавость»; нас такая функция апострофа не интересует. Есть небольшая вероятность того, что кто-то из детей сталкивался с одинарными кавычками — ‘ ’. Полиграфисты называют такие кавычки марровскими. Если такой вопрос возникнет, следует объяснить, что правая марровская кавычка и апостроф — это совсем разные знаки и похожи они случайно (кавычки — парный знак и не внутрисловный).

Таким образом, формально говоря, дефис и апостроф можно отнести к символам алфавита, хотя традиционно алфавит считается состоящим только из букв. Именно поэтому на этом листе определений доопределяется (и расширяется) наше понятие «слово»: в курсе 2 класса слово определялось как любая цепочка букв, и в результате некоторые слова русского языка по нашему определению словами не являлись. Теперь это противоречие снимается — теперь все слова русского языка являются словами и с точки зрения понятий курса информатики. Обратное, конечно же, по-прежнему остаётся неверным. Поэтому основным понятием в задачах остаётся понятие слова как произвольной цепочки букв (и дефиса с апострофом). Если в задаче требуется построить слово, являющееся частью языка, используется выражение «слово русского языка».

Во второй части листа определений тоже имеется небольшой словарь. Выбирая из него пары слов, вы можете проверить, все ли дети правильно понимают, как упорядочиваются слова с дефисом и апострофом. На самом деле для каждого слова с дефисом или апострофом его место в цепочке будет таким же, как если бы в слове этих знаков просто не было. Именно это имеется в виду в тексте листа определений, где говорится, что эти знаки при упорядочивании слов не учитываются.

Решение задач 19—26 из учебника

Задача 19. В этой первой задаче урока почти все слова можно упорядочить, ориентируясь лишь на первую букву. Исключением является пара слов ДАВНО и Д’АРТАНЬЯН: здесь потребуется правило упорядочения слов с апострофом, а ориентироваться придётся на третью букву. Это значит, что слово ДАВНО будет стоять в цепочке раньше.

Ответ: ДАВНО

Д’АРТАНЬЯН

КТО-НИБУДЬ

УТЮГ

ЧАШКА

ЧТО-НИБУДЬ

ШИШКА

Задача 20. Эта задача, как и предыдущая, из разряда простых, поскольку на каждую букву начинается не более одного слова. Если ребёнок знает алфавит и хотя бы первую часть правила словарного порядка, то решать её будет несложно. Без знания правила словарного порядка эта задача решается неоднозначно. Так, в цепочке имеется 5 слов из пяти букв, которые заканчиваются на «КА». Понять, где какое слово должно стоять, помогает именно правило словарного порядка.

Ответ:

Задача 21. На листе определений указано, что дефис и апостроф не являются знаками препинания — это внутрисловные знаки. В данном случае апострофов в тексте нет, а дефисы нетрудно посчитать (их шесть). Что касается знаков препинания, их в тексте восемь.

Задача 22 (необязательная). Достаточно трудоёмкая задача, если решать её стандартным способом. Действительно, для решения этой задачи проще вспомнить проект «Знакомство с русским текстом» и сосчитать, сколько раз в тексте встречается каждая из букв в строчном и прописном написании, а затем уже отвечать на вопросы. Поэтому желательно иметь наготове несколько чистых рабочих таблиц (тех, что использовались в проекте «Знакомство с русским текстом» в курсе 2 класса).

Однако найдутся дети, которые будут решать эту задачу методом проб и ошибок, выбирая наугад какую-нибудь букву и считая, сколько раз она встречается в тексте. В основном это будут ребята, которые не любят рутинную работу и всегда готовы что-то придумать, чтобы её избежать. Используя некоторые закономерности данного текста (и ещё немного смекалки), возможно ответить на вопросы, касающиеся строчных и прописных букв, и не заполняя полную таблицу. Действительно, займёмся прописными буквами. В данном тексте встречается не так много различных прописных букв — это все буквы, входящие в заголовок (Ш, А, Л, Т, Й, Б, О), первые буквы строк (С, В, Н) и буквы Ш, Б из имени главного героя. Какая из них может встречаться один раз? Нетрудно заметить, что это не Ш и не Б (они встречаются слишком часто), а также не С, не В и не Н (они встречаются в стихотворении попарно), значит, это какая-то из оставшихся букв заголовка: это О. Следуя той же логике, отыскиваем прописную букву, встречающуюся в тексте трижды: это А. Теперь переходим к строчным буквам. Какая из них встречается ровно 3 раза? Кто-то начнёт производить перебор, отбрасывая буквы, которых в стихотворении явно больше (например, все строчные буквы слова «Шалтай-Болтай»). Некоторых букв в стихотворении вообще нет, что облегчает задачу.

Заключительным этапом решения задачи может быть совместное выяснение того, кто такой Шалтай-Болтай и почему его нельзя собрать (ведь в действительности это загадка).

Ответ:

Один раз встречается прописная буква О.

Три раза встречается строчная буква и.

Три раза встречается прописная буква А.

Десять раз встречается строчная буква е.

Задача 23 (необязательная). Здесь требуется анализировать не просто отдельные утверждения, а пары: утверждения и их истинностные значения. Эту задачу будет трудно решать, если анализировать утверждения по одному. Проще вначале прочесть все утверждения и попытаться как-то объединить их по смыслу. Можно сказать, что некоторые утверждения похожи оп содержанию: первое и последнее утверждения — про длину цепочки Е; второе и пятое — про одинаковые бусины; третье, четвёртое и шестое — про длину бусин-цепочек.

Проще всего сначала разобраться с длиной. Первое утверждение ложно, значит, длина цепочки Е не 1. Из последнего утверждения следует, что длина цепочки меньше 5. Вывод: длина цепочки может быть 4, 3, 2 или 0.

Второе, третье и пятое утверждения близки: если пятое истинно, то истинно и второе, а третье ложно. Итак, в этой цепочке должны быть две одинаковые пустые бусины-цепочки. Добавляя этот вывод к первому, получаем, что это непустая цепочка (длины 2, 3 или 4), среди бусин которой есть две пустые цепочки.

Теперь понятно, что четвёртое утверждение из-за наличия двух пустых цепочек не может быть истинным. Из шестого утверждения узнаём, что среди бусин этой цепочки есть цепочка длины 3.

Конечно, ребята не смогут провести все эти рассуждения так же гладко и в полном объёме. Возможно, они выделят сначала какую-то одну особенность цепочки Е, а дальше начнут действовать методом проб и ошибок, рисуя разные цепочки. Это тоже неплохо, главное, чтобы они всегда сопоставляли получившуюся цепочку с утверждениями из таблицы, а если что-то не сойдётся, делали правильные выводы.

Задача 24 (необязательная). В задаче фигурирует английский оригинал текста (английского стишка), русский вариант которого (в переводе ) был использован в задаче 21. Мы видим, что рисунок знаков препинания и внутрисловных знаков изменился как количественно, так и качественно. Например, исчезли дефисы и появились апострофы, а количество знаков препинания значительно уменьшилось. Что это? Случайность или закономерность, вытекающая из законов грамматики русского и английского языков? Если ребята уже начали изучать английский язык, можно это обсудить.

Вот подстрочный перевод на русский язык:

Хампти Дампти сидел на стене,

Хампти Дампти упал.

Все королевские кони и все королевские ратники

Не могут собрать Хампти Дампти заново.

Перевод довольно близок к оригиналу, исключение — это объяснение немотивированного в английском оригинале падения персонажа. Если у вас есть желание, можно поговорить с детьми о загадках, о стихах, о переводе стихов и т. п.

Ответ: в тексте всего три знака препинания, ноль дефисов, три апострофа.

Задача 25. В условии задачи говорится о том, что все слова из мешка должны содержаться в словаре, но про то, что в мешке должны лежать все слова из словаря, в задаче не говорится ничего. Неправильное понимание условия может поставить ребёнка в тупик. Как только ученик поймёт, что слов в словаре больше, чем в мешке, у него может возникнуть вопрос «Куда их девать?». Если такой вопрос возникнет у многих, организуйте его общее обсуждение (естественно, опираясь на самые простые примеры). Например, мама ведёт своих дочек в магазин, чтобы купить каждой по одному платью. Продавщица говорит: «Для каждой вашей дочери в нашем магазине найдётся платье». Что она имеет в виду? Означает ли это, что дочерей должно быть ровно столько, сколько платьев в магазине? Примеры можно придумать и более увлекательные, причём лучше, если несколько примеров приведут и сами дети.

Каждая заготовка в мешке (цепочка букв, знаков и окон) однозначно определяет слово из словаря. При этом важно не забыть, что каждый внутрисловный знак (дефис или апостроф) — это отдельный символ, под который в заготовке отведено своё окно.

Задача 26 (необязательная). Эта задача — продолжение и усложнение задачи 13. В отличие от задачи 13, здесь появляются понятия «послезавтра» — аналог понятия «вторая бусина после» и «позавчера» — аналог понятия «вторая бусина перед». В результате приходится рассматривать более длинные цепочки, состоящие из трёх (вчера, сегодня, завтра), а иногда из четырёх дней (позавчера, вчера, сегодня, завтра). Соответственно появляются более длинные цепочки рассуждений. Например, в последнём утверждении цепочка рассуждений будет выглядеть так: «Завтра будет понедельник, значит, сегодня воскресенье. Сегодня воскресенье, значит, вчера была суббота, а позавчера — пятница».

Ответ: среда, понедельник, вторник, вторник, пятница.

Урок «Дерево. Следующие вершины, листья. Предыдущие вершины»

Начиная разговор о цепочках, мы упоминали о последовательности событий. Однако нам не всегда интересна простая линейная последовательность событий. Приведём несколько примеров.

1. Перед нами стоит возможность выбора и приходится рассматривать несколько вариантов дальнейшего хода событий: «Направо пойдёшь — коня потеряешь, налево пойдёшь — буйну голову сложишь, прямо пойдёшь — на красавице-царевне женишься».

2. Мы выбираем один из возможных объектов, но хотим потом изменить своё решение и выбрать другой.

3. Мы выделяем в задаче подзадачи, раздаём их участникам проекта, а потом собираем результаты для поиска одного решения.

Во всех этих случаях одним выбором дело не заканчивается — ситуация выбора, ветвления может повторяться. Например, игроки в процессе игры делают выбор много раз — почти при каждом своём ходе. При попытке изобразить эту ситуацию на бумаге возникают графические схемы, называемые деревьями.

В нашем курсе рассматриваются не все деревья, которые используются в современной математике и информатике, а только те, которые больше всего приближены к цепочкам. В нашем курсе деревья обладают следующими фиксированными свойствами:

·  в каждой вершине дерева обязательно находится некоторый объект — буква, цифра, бусина, фигурка (вообще, бывают и такие деревья, не все вершины которых помечены, т. е. не в каждой вершине стоит какой-то объект);

·  вершины, следующие после корня дерева, называются корневыми вершинами, корневых вершин в дереве может быть несколько (в информатике обычно используются только деревья с единственной корневой вершиной, собственно, эта единственная корневая вершина является корнём дерева);

·  деревья направлены, они «растут» в одну сторону: у каждой вершины, если она не является листом, может быть несколько следующих вершин и ровно одна предыдущая, если вершина не корневая (у корневой вершины нет предыдущей).

Решение задач 27—33 из учебника

Задача 27. Попросите детей проверить своё решение: в окне должны быть все бусины-листья дерева Ч, причём только они. Чтобы не запутаться, можно сразу помечать на дереве Ч каждый нарисованный в мешке лист.

Задача 28. Если вы хотите быстро проверить правильность выполнения задания, попросите каждого определить истинность следующего утверждения для своего дерева: «Ни у одной вершины дерева нет следующих вершин». При правильном построении дерева данное утверждение должно быть истинным. Если кто-то из детей построил дерево неверно, попросите его вернуться к листу определений.

Задача 29. В задаче используются практически все понятия, относящиеся к теме «Деревья», особенно активно — понятия «следующая вершина» и «предыдущая вершина». Несмотря на то что эта терминология знакома учащимся по работе с цепочками, в применении к деревьям появятся дополнительные трудности. В цепочке каждая бусина имеет не более одной предыдущей и не более одной следующей. Поэтому мы употребляли в единственном числе словосочетание «следующая бусина» аналогично словосочетаниям «следующий день», «следующий урок». В дереве каждая вершина может иметь несколько следующих вершин, поэтому мы употребляем множественное число: «следующие вершины». В русском языке словосочетание типа «следующие дни» имеет несколько другое значение: обычно имеется в виду и следующий день, и второй, и третий, и ещё несколько следующих за ним дней. Мы же на листе определений договорились понимать словосочетание «следующие вершины» только как «вершины, следующие непосредственно после указанной». Такое различие значений может поначалу стать источником ошибок. Например, кто-то из ребят может ошибочно посчитать утверждение G (У бегемота четыре следующие фигуры — волк, гусь, заяц, индюк) истинным. Необходимо попросить такого ученика вернуться к примерам на листе определений и разобраться, какие вершины дерева мы договорились называть следующими после данной.

Ответ: ложные утверждения для дерева У:

Утверждение В (предыдущая фигурка перед дельфином — белка).

Утверждение С (у жирафа три следующие фигурки — лев, лось и курица).

Утверждение Н (фигурка верблюда в дереве есть).

Утверждение G (у бегемота две следующие фигурки — волк и гусь).

Утверждение К (предыдущая фигурка перед курицей — жираф).

Остальные утверждения истинны.

Задача 30. В этой задаче проверяется, насколько хорошо ученики усвоили понятие «дерево» и основные свойства деревьев. Желательно эту задачу обсудить всем классом. Попросите детей сформулировать обоснования, почему каждый объект является или не является деревом, например: F не является деревом, поскольку у синей квадратной бусины две предыдущих. Это же условие нарушено и в схемах J и V. Оставшиеся две схемы являются деревьями.

Задача 31. Задачи на расстановку слов в словарном порядке постепенно усложняются. В этой задаче упорядочение идёт по второй, а в некоторых парах — и по третьей букве. Кроме того, детям здесь понадобится правило упорядочения для случая, когда одно слово является частью другого. Как обычно, лучше сначала записывать слова в цепочку карандашом и только после проверки обвести их ручкой. Кроме того, чтобы не пропускать слова и не писать их дважды, лучше помечать каждое слово из мешка, которое записано в цепочку.

Ответ: КАША

КИЛЬКА

КОМОД

КОТИК

КРЕСТ

КРУЖКА

КТО

КТО-ТО

КУСТ

Задача 32 (необязательная). Задачи на поиск одинаковых мешков дети решали уже не раз. При этом они использовали разные стратегии: это и хаотичное сравнение пар мешков, и систематический перебор (и сравнение) таких пар. Многие ребята к настоящему моменту умеют разбивать мешки на группы по некоторому признаку. Здесь в качестве такого признака может быть наличие или отсутствие некоторой птицы, например попугая.

Задача 33. Задача готовит ребят к проекту «Одинаковые мешки». В комментарии к предыдущей задаче мы напомнили о знакомых детям разных стратегиях поиска одинаковых мешков. Здесь ребята встречаются с ещё одной стратегией: заполнить таблицу для каждого мешка. В сводной таблице каждый мешок будет представлен отдельной строкой. Остаётся сравнить эти строки между собой и найти две одинаковые. Ясно, что упорядоченные строки чисел сравнить легче, чем беспорядочные наборы предметов.

Заполнять таблицу можно как по строкам, так и по столбцам. По строкам для каждого мешка указывается количество птиц каждого вида (если каких-то птиц в мешке нет, в соответствующей клетке записываем 0). По столбцам выбираются по очереди не мешки, а птицы и отмечается их число в каждом мешке. Когда вся таблица оказывается заполненной, дети переходят ко второй части задания.

Уроки «Уровень вершины дерева»

Понятие «уровень вершины дерева» не является, строго говоря, содержательным понятием. Это скорее технический термин — как, скажем, понятия «начало цепочки» и «конец цепочки». Введение понятия «уровень дерева» поможет ребёнку при самостоятельном построении дерева. Также это понятие позволит нам сформулировать интересные, но не слишком трудные для учащихся задания.

Решение задач 34—45 из учебника

Задача 34. На предыдущем уроке дети лишь однажды (в задаче 28) строили дерево. При этом все вершины были корневые, поэтому вряд ли дети могли столкнуться с проблемой расположения вершин дерева в окне. Дальше ребятам придётся строить более сложные деревья, поэтому такая проблема обязательно появится. Лучше столкнуться с ней на примере этой простой по содержанию задачи. Проследите, чтобы все рисовали дерево по уровням. Обратите внимание ребят на то, что пунктирные линии в окне (в рабочей тетради) — это линии, которые разделяют окно на уровни. Бусины нужно рисовать между линиями, а не на них. Именно поэтому горизонтальных полос в окне четыре, как и уровней в условии задачи (а пунктирных линий всего три!). Деревья у ребят могут быть самыми разными, ограничений здесь не много. По условию у дерева должно быть четыре уровня, значит, на четвёртом уровне должна располагаться хотя бы одна бусина. Кроме того, дерево по ширине должно помещаться в окно. Ну и конечно, это не должна быть простая цепочка бусин: в дереве должно содержаться хотя бы одно ветвление.

Задача 35. Задача аналогична предыдущей задаче. При дефиците времени её можно пропустить или задать на дом.

Математическое словоупотребление

Возьмём мешок:

Верно ли утверждение «Все бусины в этом мешке — квадратные»? Вероятно, вы скажете, что верно. Однако многие люди, в том числе и ваши ученики, могут сказать: «Как же так, в утверждении говорится все, а здесь всего одна бусина! Данное утверждение или бессмысленно, или неверно». На это можно возразить, приведя такой пример. Вы просите всех, кто не сделал домашнее задание, поднять руки и обещаете всем, кто его не сделал, поставить двойку (и всем, кто поднял руку, дать возможность эту двойку исправить). Поднял руку один Вася (все остальные домашнее задание сделали). Верно ли, что подняли руку все, кто задание не сделал? Кажется, да. Если вы поставите бездельнику Васе двойку, верно ли, что все, кто не сделал домашнего задания, получили двойку? Скорее всего верно. Но ведь Вася один! Этот пример может кого-то убедить.

Дело, однако, не в убедительности примера, а в том, что некоторые слова математики используют не «по здравому смыслу» (хотя и согласуясь с ним), а «по договорённости». Это значит, что они, заранее договорившись о смысле какого-то слова, дальше всегда используют именно его, несмотря на то что слово может иметь и другие смыслы в обычном языке. Важно при этом, что математики заботятся о том, чтобы такие договорённости были осмысленными и простыми.

Например, математики договорились и о том, как понимать смысл слова существует. Когда они говорят, что в мешке существует, найдётся объект с данными свойствами, то это верно, если в мешке объект с этим свойством один или больше или даже все объекты в мешке обладают этим свойством.

Задача 36. Здесь дети впервые сталкиваются с явным употреблением понятия «все» в случае, когда объект всего один. Например, третий пункт инструкции гласит: «Раскрась все квадратные бусины четвёртого уровня синим», а среди бусин четвёртого уровня квадратная бусина всего одна.

Задача 37. В отличие от задачи 36, где нужно было найти на готовом дереве бусины на разных уровнях, в этой задаче даны мешки бусин первых трёх уровней дерева, детям необходимо нарисовать дерево в окне. Здесь, как и во всех подобных задачах, окно в рабочей тетради разделено на уровни. Мы надеемся, что это поможет детям правильно расположить бусины дерева по уровням и нарисовать в окне аккуратное дерево. Учащийся может, например, сразу нарисовать бусины из каждого мешка на соответствующем уровне (конечно, в любом порядке), добавить по желанию бусины на четвёртом и пятом уровнях, а потом уже соединить все нарисованные бусины в дерево.

Задача 38 (необязательная). Задача на повторение понятий «все», «есть», «нет». Как и в других задачах со словом все, здесь необходим полный перебор всех месяцев года и проверка для каждого из них обоих условий. Условию задачи удовлетворяют три слова.

Задача 39. В задаче настолько мало ограничений, что кто-то, прочитав условие, возможно, будет просто сидеть, не зная с чего начать. На самом деле можно нарисовать первое дерево каким угодно, а затем из его бусин сконструировать второе дерево так, чтобы уровней в нём было больше (или меньше).

Задача 40. Одинаковое общее количество мышей в таблице и в мешке является необходимым, но не достаточным условием правильности решения. Если эти числа не совпадают, то в решении точно допущена ошибка, если же они совпадают, то это не гарантирует правильности заполнения таблицы. Ребёнок мог, заполняя одну клетку, сосчитать какую-то мышь дважды, а заполняя другую клетку, пропустить одну мышь.

Таблица будет заполнена верно, если не только общее число мышей, но и суммы по строкам и столбцам будут совпадать с действительным числом мышей в мешке, обладающих именно этим одним признаком. В мешке 6 мышей в красных майках, значит, сумма всех клеток верхней строки должна быть равна шести. Если это условие не выполняется для какой-то строки или столбца, то так мы узнаём, каких мышек нужно снова пересчитать. Этот метод можно использовать и в случае, если у ребёнка сразу не сошлось число мышей в таблице и в мешке. Чтобы не пересчитывать всё заново, можно посчитать число мышей в майках каждого цвета, а затем проверить суммы по строкам. В строке, где эти числа не сойдутся, нужно искать ошибку. Если провести такую работу ещё и по столбцам, то можно будет назвать клетку таблицы, где число вписано неверно.

Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 8 9 10

pandia.ru

К урок 7. Таблица для мешка (повторение)

Во втором классе дети уже работали с аналогичным листом определений, поэтому знакомство с данным листом определение должно проходить в формате повторения. Все методические аспекты данного листа определений мы с вами обсудили в комментариях к курсу 2 класса. Теперь давайте обсудим более серьезно научный аспект данного вопроса. Возможно, этот разговор поможет вам при подготовке к уроку или просто будет интересен. Ваши ребята уже привыкли к мешкам, в которых лежат предметы разных сортов, и к одномерным и двумерным таблицам для мешков. Надеемся, что такие математические объекты уже не вызывают особых трудностей. Однако для математики переход от одномерных объектов к двумерным оказывается достаточно важным шагом. Дело в том, что числа, прежде всего натуральные, очень удобны для измерений, например, времени (скажем, в секундах), или веса (в граммах), или пройденного расстояния (в метрах). Если мы хотим указать, не сколько мы прошли, а куда пришли, то ситуация становится сложнее. Нам приходится указывать «два измерения» – два числа или два символа. Это похоже на то, как мы указываем положение в городе (например, говорим «угол Ленина и Розы Люксембург») или поле на шахматной доске (например, «e2»). Самый распространенный в математике способ состоит в том, что на поверхность наносится сетка, как на бумаге в клетку. Если взять лист клетчатой бумаги, то с каждой клеткой на нем можно сопоставить два натуральных числа. Одно из этих чисел означает, сколько шагов надо сделать из нашей клетки, чтобы оказаться у левого края листа, а другое – сколько шагов надо сделать, чтобы добраться до нижнего края. Два таких числа называют координатами квадратика, их нельзя поменять местами – это не просто мешок, в котором лежат два числа, но упорядоченная пара (цепочка!), о которой мы договорились, что первое число – всегда расстояние до левого края листа, а второе – расстояние до нижнего края. Тем не менее, координаты можно сложить в мешок. Для этого понадобятся бусины двух типов: бусина одного типа будет обозначать один шаг влево, а бусина другого – один шаг вниз. Какими именно будут бусины – вопрос договоренности. Например, квадратными и круглыми или синими и зелеными. А могут быть карточки, на которых написано «влево» и «вниз». Таким образом, каждой клетке на листе можно сопоставить мешок, в котором будет сколько-то бусин «влево» и сколько-то бусин «вниз». Построив одномерную таблицу такого мешка, получим опять пару чисел, аналогичную координатам: ведь в таблице для каждого числа ясно, число каких именно карточек оно обозначает. Получится так называемый вектор. Конечно, вектор может иметь не только два, а несколько параметров (чисел). В нашем мешке могут тоже лежать бусины многих типов. В отличие от множества в мешке (мультимножестве) может быть несколько объектов одного типа. Значит, в таблице будут не только единицы и нули. С понятия вектора начинается изучение того, что иногда называют аналитической геометрией. Данное понятие лежит в фундаменте всей физики и многих разделов математики. Тема данного урока – двумерные таблицы для мешков. С научной точки зрения двумерные таблицы – это следующая по сложности структура – набор векторов. Конечно, мы не будем наших детей сейчас нагружать такой сложной терминологией. Достаточно того, что они научатся сортировать и классифицировать элементы мешка по двум признакам и аккуратно заполнять таблицу. Задача 19. Вначале требуется заполнить четыре (одномерные) таблицы, т. е. классифицировать лица поочередно по четырем различным признакам – носу, рту, глазам и бровям. Перед сильным ребенком можно поставить вопрос, как проверить правильность заполнения этих четырех таблиц. Скорее всего, сильные дети ответят, что сумма чисел в каждой таблице должна быть одной и той же. Попросите такого ученика объяснить, почему так получается. Действительно, по какому бы (одному) признаку мы ни классифицировали лица, в сумме мы должны получить то количество фигурок, которое лежит в мешке. Ответ (одномерные таблицы): Вторая часть задачи – заполнение двумерных таблиц – технически более сложная. Трудность, во-первых, в том, что дети должны держать в голове одновременно два признака и полностью отключиться от остальных. Во-вторых, признаки хотя и осмысленные, но однотипные (палочки и закорючки), поэтому легко путаются, а предметы в мешке при этом не отличаются ни формой, ни размером, ни цветом. В-третьих, одновременно с поиском лиц ученик должен их еще и считать. Задание специально составлено таким образом, чтобы каждый ребенок почувствовал необходимость выработки системы своей работы. Лучше всего эти системы обсудить с каждым индивидуально, причем именно в тот момент, когда ученик начал запутываться. Некоторые дети будут заполнять клетки таблицы правильно, с ними необязательно обсуждать, как они действуют. У них уже есть своя система, и, возможно, в ходе наблюдения за работой учащихся вы сможете позаимствовать новую стратегию подсчета. Тем, кто запутался и не может ничего придумать, необходимо помочь, самое разумное – выработать систему в совместном обсуждении. В зависимости от того, к чему будет склоняться ученик, мы предлагаем вам один из трех возможных подходов. Первый подход состоит в том, чтобы заполнять клетки таблицы поочередно, т. е. искать каждый раз лица, где присутствуют два определенных признака (например, округлый нос и глаза, скошенные в сторону). Основные проблемы при такой работе:
  1. Соскальзывание с эталона – при переводе взгляда и внимания с таблицы на объекты мешка ребенок может забывать, какие именно признаки он ищет в данный момент, и переключаться на другие;
  2. Сложность одновременно искать лица и считать их, даже пользуясь различными пометками.
Для устранения первой проблемы можно использовать шаблоны, т. е. заранее нарисованные лица, со всевозможными комбинациями двух признаков, которые встречаются в таблице (всего 12 шаблонов для каждой таблицы). Такие шаблоны необходимы для слабых и рассеянных детей. Ребенку с большей устойчивостью внимания будет достаточно нарисовать на черновике глаза и нос, которые он ищет, и периодически поглядывать на этот образец. Для устранения второй проблемы можно использовать пометки, то есть сначала искать и помечать лица, а потом считать все пометки. Необходимо только помнить – пометки должны быть такие, чтобы дети не путали лица, помеченные на текущем и предыдущих этапах. Для этого нужно либо после заполнения каждой клетки зачеркивать все лица, выделенные по этим двум признакам, либо использовать разные пометки для каждой клетки. Может оказаться сложным придумать 12 разных пометок, поэтому проще будет пронумеровать все клетки таблицы и использовать номера в качестве пометок, при этом лучше всего естественная нумерация таблицы – слева направо и сверху вниз. Второй подход состоит в том, чтобы поочередно брать лица из мешка и соотносить их с определенной клеткой в таблице. Например, лицо в левом нижнем углу имеет рот прямой черточкой и нахмуренные брови, значит, оно должно находиться в верхней клетке самого левого столбца второй таблицы. Ставим в этой клетке небольшую пометку (например, палочку) и соответствующее лицо в мешке тоже помечаем (например, обводим). Когда все лица в мешке окажутся помеченными, подсчитаем палочки в каждой клетке таблицы и заменим их на полученные числа. Третий подход – скопировать страничку учебника, вырезать все фигурки из мешка и рассортировать их на столе по необходимым признакам. Подсчитав, сколько фигурок оказалось в каждой кучке, заполнить таблицу. Этот способ самый простой. Не стоит его предлагать детям, которые хоть как-то справляются без него. Но если вы видите, что ребенок никак не может сосредоточиться (внимание рассеивается), то предложите ему этот способ, выдайте копию странички. Выработав вместе с ребенком систему работы, подходите к нему время от времени и проверяйте, что он этой системе следует, обсуждайте снова, что он делает. После того как все определились со стратегией и углубились в работу, возможно, ребят начнут посещать идеи о соотношении одномерных и двумерных таблиц и о том, как это можно использовать при решении и проверке. Например, многие ребята вспомнят, что одного из видов глаз в мешке не обнаружено. Кто-то сделает совершенно справедливый вывод, что комбинации этого вида глаз со всеми формами носа тем более отсутствуют, поэтому во всех строках последнего столбца левой двумерной таблицы нужно написать нули. Если дальше такого вывода мысль не пошла, попробуйте возродить идею о соотношении одномерных и двумерных таблиц в ходе проверки. Например, спросите ребят: «Где в левой двумерной таблице находятся все лица с округлым носом?» Ясное дело, в верхней строке. «А сколько у нас всего лиц с круглым носом?» Эту информацию можно найти в первой одномерной таблице – таких лиц всего 15. Вывод: сумма всех чисел в верхней строке должна быть равна 15. Если у ученика это условие выполняется, он может переходить ко второй строке и проводить для нее аналогичную работу, если нет, ищет ошибку в клетках верхней строки. После проверки по строкам можно провести проверку по столбцам на основании информации третьей одномерной таблицы. Если все сходится, это гарантирует правильность заполнения двумерной таблицы (конечно, при условии, что одномерные таблицы заполнены верно). Таким образом, отпадает необходимость фронтальной проверки. Самая полезная проверка – это проверка, в ходе которой ребенок самостоятельно нашел свои ошибки.

Ответ (двумерные таблицы):

Задача 20. Строение деревьев и форма бусин у всех ребят должны быть одинаковыми, различия будут только в раскраске бусин. Поэтому и значения истинности должны быть у всех одинаковы для первого (Л), третьего (Л) и четвертого (И) утверждений таблицы. Задача 308. Стандартная задача на построение мешка по его двумерной таблице. Таких задач во 2 классе ребята решали довольно много. Если вы опасаетесь, что ребята многое забыли, напомните им, что клетки таблицы стоит использовать в некотором порядке, например, слева направо и сверху вниз. При этом полезно помечать клетки таблицы, которые уже использованы. Задача 309. Как видите, эта задача сложней и интересней предыдущей. Здесь необходимо соблюсти сразу 3 условия – показания двух одномерных таблиц и то, что все фигурки должны быть разными. Это накладывает серьезные ограничения на искомый мешок. Для начала замечаем, что каждая фигурка в библиотеке трех цветов. Значит надо начать с фигурок, которых во второй таблице по три. У нас в библиотеке имеется ровно 3 разных груши и три разных сливы, поэтому кладем их в мешок, ведь других вариантов у нас нет. После этого обратимся к первой таблице. Мы уже положили в мешок по две фигурки каждого цвета, значит осталось положить одну красную, одну зеленую и две желтых. При этом среди них должно быть два яблока и два банана. Сделать это можно по-разному, поэтому решений в этой задаче несколько. Задача 310. В этой задаче детям снова придется строить дерево по описанию. Первое утверждение означает, что в нашем дереве всего 2 уровня бусин. На каждом уровне по три листа, значит на втором уровне 3 листа. Всего в дереве 8 бусин, значит на первом уровне 5 бусин, три из которых листья. Значит из одной корневой бусины выходит один лист и еще из одной – два листа. Конечно, деревья ребят будут отличаться бусинами, стоящими в вершинах дерева, ведь о форме и цвете бусин в задаче не сказано вообще ничего. Задача 311. Как и в большинстве наших задач на построение деревьев, решений здесь довольно много. Ясно, что у любого дерева должно быть не меньше двух листьев. В нашей задаче все листья слоны, причем разные слоны. Значит наше дерево имеет или 2 или 3 листа. Также мы может точно сказать, что дерево имеет 3 уровня бусин. Ясно, что все фигурки из библиотеки использовать в дереве не удастся. Наибольшее число фигурок в дереве будет 9. Так получится, если в дереве будет 3 листа, расположенных на третьем уровне и по три бусины на остальных уровнях (больше их быть в нашем дереве просто не может). Наименьшее число фигурок в дереве будет 4. Так получится, если в дереве будет ровно 2 листа – один на первом и один на третьем уровне и 2 не листа (меньше их быть просто не может). Задача 312. Задача на повторение темы «Мешок бусин цепочки». Аналогичные задачи в курсе 2 класса встречались неоднократно. Эта задача скорее языковая и практическая, чем информатическая. Поэтому не стоит относиться к таким задачам чересчур серьезно, ведь формальный способ их решения может занять много времени. Большинство ребят обычно быстро догадываются, о каком слове идет речь. Но если ребенок совсем застрял, вы, чтобы не подсказывать ему решение, можете дать лишь один совет – провести полный перебор слов с таким мешком букв. Ясно, что на этот способ уйдет много времени. Кроме того, чисто теоретически есть вероятность (хотя и не большая), что нужного слова ребенок просто не знает. В этом случае даже перебор ему не поможет. Поэтому если проблемы возникли у слабого ребенка, то одно-два слова он может просто пропустить. Сильного ребенка стоит попросить хотя бы начать некоторый перебор. В процессе обсуждения вариантов слово наверняка найдется. Задача 313. Необязательная. Как видите, эта задача – типичная практическая информационная задача. Подобные задачи (в отличие от традиционных задач нашего курса) характеризуются тем, что кроме информации, изложенной на листах определений учебника нужно привлекать информацию из окружающего мира. В нашем курсе обычно используются общеизвестные факты или же те, до которых ребенок может легко догадаться. Так в данном случае даже далекий от музыки ребенок в состоянии догадаться, что струнными называются инструменты, в которых имеются струны, а клавишными – в которых имеются клавиши. Также вполне правдоподобно соображение, что понятие «духовые» от слова «дуть», а «ударные» - от слова «ударять». Задача 25. Главное в задаче – работа с утверждениями, которые не имеют смысла. При определении истинности утверждений типа «В этом слове предыдущая буква перед А – З» мы предполагаем, что в слове имеется буква А, причем одна, а также имеется предыдущая буква перед А. Только в этом случае можно достоверно сказать, что предыдущая буква З (тогда утверждение истинно) или не З (тогда утверждение ложно). В случае, если буквы А в слове нет, если букв А несколько (тогда непонятно, о какой из них идет речь) или буква А – первая в цепочке (нет буквы, предыдущей перед А), утверждение для данного слова не имеет смысла. Эта ситуация принципиально отличается от той, когда мы пишем «Н», говоря, что значение утверждения неизвестно. В таком случае мы не отрицаем возможности анализа утверждения с точки зрения его истинности или ложности, просто говорим, что информации, необходимой для этого анализа, у нас пока нет. Если же мы сталкиваемся с ситуацией, когда бусина не одна или ее нет, то мы вообще выбрасываем из рассмотрения такие утверждения как некорректные и поэтому не поддающиеся анализу. На третьей странице обложки помещены листы определений, напоминающие, в какой ситуации утверждения оказываются бессмысленными. Наверное, самое большое число ошибок вызовет третье утверждение для слова Z. Ошибки эти связаны с тем, что ребята могут пытаться как-то домыслить и переформулировать (конечно, интуитивно) утверждения, которые сформулированы некорректно. Поэтому, видя, что одна буква Е в этом слове идет позже В и другая буква Е идет позже В, кто-то может сделать вывод об истинности утверждения. Однако мы с вами помним, что основная задача курса – привить ребятам навык мыслить в рамках формальной логики, научить их работать в рамках общих правил.

Ответ:

gondak.blogspot.com

Информатика 3 класс (стр. 6 )

Этим применение формальных деревьев и их графических представлений в человеческой практике не ограничивается. Очень полезными оказываются деревья при классификации. Тогда ветвление соответствует выбору того или иного значения признака классификации. Например, можно классифицировать детей в школе по параллелям, внутри параллели по буквам (3 «А» и 3 «Б»), потом по алфавиту или как-то ещё.

В современном компьютерном мире широко распространились деревья ссылок в составе так называемых гипертекстов. Однако деревья ссылок от одного слова к другому существуют и в обычных, бумажных энциклопедиях.

Языковые структуры тоже удобно представлять в виде деревьев.

Полный перебор и деревья

Конструкция полного, исчерпывающего перебора важна в нашем курсе и вообще в жизни. (Представьте себе на секунду поиски пропавшего паспорта в квартире или ровно «той самой» кофточки. В этой ситуации бывает нужно последовательно просмотреть все места, полки, ящики и т. д. Часто вещь находится в самом неожиданном месте, там, куда вы её положили, «чтобы она не пропала». Надеемся, что в реальности вам не приходится заниматься такими поисками.)

Иногда бывает очень нужно сократить перебор, подумать, где вещи точно не может быть, и т. п. Но прежде чем изобретать разные стратегии сокращения перебора, нам следует понять, как организовать действительно полный перебор. С одной стороны, выписывание всех путей дерева является примером полного перебора, с другой стороны, во многих случаях перебор естественно представить в виде перемещения по дереву. Например, в случае поисков в квартире можно соотнести со всей квартирой корневую вершину; следующие вершины — это комнаты квартиры; за комнатами идут шкафы, полки и столы, стоящие в комнатах; в шкафах есть отделения и полки и т. д.

Решение задач 103—115 из учебника

Задача 103. Задача на понимание нового листа определений. Если вы видите, что кто-то выписывает цепочки, которые путями дерева D не являются, попросите его ещё раз разобрать примеры листа определений и внимательно прочитать текст. В дереве D всего пять путей — БУМ, БУР, МИГ, МИР и МИФ, все они различны, и любые три в данном случае являются ответом.

Задача 104. Такие деревья вполне осмысленны с точки зрения современной лингвистики. В дереве J всего шесть путей, учащиеся могут выписать любые четыре из них. По завершении этой работы ребята должны проверить, что все пути разные, поскольку в условии имеются в виду, конечно, разные пути.

Пути дерева:

ДЕТИ ЛЕТОМ КУПАЮТСЯ

ДЕТИ ЛЕТОМ ЗАГОРАЮТ

ДЕТИ ЛЕТОМ ИГРАЮТ

ДЕТИ ЗИМОЙ КАТАЮТСЯ НА КОНЬКАХ

ДЕТИ ЗИМОЙ КАТАЮТСЯ НА ЛЫЖАХ

ДЕТИ ЗИМОЙ КАТАЮТСЯ НА САНКАХ

Задача 105. Задача требует от ребят более глубокого понимания того, что такое путь дерева. Дети могут заметить, что некоторые пути дерева (выходящие из разных корневых вершин) совершенно не связаны между собой, т. е. вершины, которые принадлежат одному пути, не принадлежат другому. Совершенно иной будет ситуация, когда два пути выходят из одной корневой вершины. В этом случае корневая вершина определяет начало сразу нескольких путей, которые из неё выходят. Так, например, прогуливая школу, ученик определяет несколько возможных сценариев дальнейшего развития событий, связанных между собой и неприятных. Эти сценарии никак не связаны с развитием событий в том случае, если бы он пошёл в школу.

Скорее всего, ребята начнут решать задачу методом проб и ошибок, ставя различные знаки в различные окна и проверяя условия. Здесь постепенно и начнёт формироваться идея связи. В ходе экспериментов ребята начнут понимать, что нельзя поставить в корневую вершину, из которой берут начало четыре пути, ни знак приоритета, ни знак сервиса. Действительно, в этом случае мы задаём сразу четыре пути, и тогда путей в дереве потом просто не хватит. Если же мы поставим в эту вершину запрещающий знак, дальше решение достраивается само собой — во все следующие за ней вершины мы ставим также запрещающие знаки, за той из них, что не является листом, тоже ставим запрещающие знаки. Итак, первое условие выполнено — есть четыре разных пути, все знаки в которых запрещающие. При этом все оставшиеся пути, оказывается, никак не связаны между собой, их можно строить по отдельности: три из знаков приоритета, один из знаков сервиса. Количество знаков на листе вырезания в данной задаче также не накладывает никаких дополнительных ограничений.

Задачу можно рассматривать как хороший повод продолжить знакомство со знаками дорожного движения. С дорожными знаками дети уже работали при решении задачи 5. В комментарии к этой задаче мы советовали обсудить с ребятами смысл данных знаков и поговорить о них. Теперь можно продолжить эту работу на другом наборе дорожных знаков. Ниже мы приводим информацию об использованных в задаче дорожных знаках.

Задача 106. Задача на повторение листа определений «Перед каждой бусиной. После каждой бусины». Нетрудно догадаться, что в результате раскраски в цепочке появятся одинаковые последовательности цветов: зелёный — жёлтый — синий — красный.

Задача 107. Это первая задача на новую тему, где требуется не просто выписать какие-нибудь пути дерева, а найти путь, удовлетворяющий определённым условиям. Эту работу будут затруднять особенности дерева G. Во-первых, оно достаточно большое, во-вторых, слишком много одинаковых вершин на одном уровне (в том числе все корневые вершины одинаковые). Задание (а) включает также новую деталь — словосочетание «путь длины 2»: путь — это цепочка, а что такое длина цепочки, ребятам известно, значит, речь идёт просто о цепочке длины 2. Найти её не слишком сложно, так как деревья мы всегда рисуем по уровням (и ребят приучаем к тому же). Поэтому достаточно найти на втором уровне хотя бы один лист и пометить путь, который в него ведёт (это слово КУ). Найти путь КРОНА оказывается сложнее. Здесь ребята, скорее всего, воспользуются методом перебора, просматривая пути один за другим до тех пор, пока не найдут нужный. Кто-то может догадаться, что КРОНА — путь длины 5, значит, его последняя вершина находится на пятом уровне. Последняя вершина этого пути — А, значит, остаётся найти на последнем уровне все вершины А (таких оказывается всего 4) и проверить все пути, идущие в эти листья.

Задание (в) самое сложное. Если ребята в первых двух заданиях могли случайно наткнуться на решение, то здесь без перебора обойтись трудно. Учитывая второе утверждение, можно вести перебор только путей длины 5 (по листьям последнего уровня), но и такой перебор будет достаточно большим. Поэтому предоставьте ребятам достаточно времени для выполнения этого задания. Возможно, сообразительные ребята, не склонные к выполнению рутинной работы, придумают нечто, чтобы отсечь часть вариантов. Это очень хорошо, но не стоит требовать этого от всех. Например, нетрудно догадаться, что последняя буква искомого пути не может быть гласной, иначе первое утверждение потеряет смысл. Тогда перебор по возможным буквам последнего уровня уже гораздо меньше, их всего 5. При этом обнаруживается только два подходящих слова — КРОЛЬ и КРЕСТ.

Задача 108 (необязательная). Это задача на склеивание цепочек, но языковая составляющая её настолько велика, что формально решить её невозможно. Перебрать все слова русского языка невозможно, значит, перебор будет лишь дополнять различные языковые соображения ребят и простое угадывание. Поэтому не стоит требовать от всех ребят решения. Если вы видите, что у кого-то задача совсем не идёт — просто предложите ученику другую задачу.

Решений здесь много, например, в качестве результатов склеивания подойдут слова: ТЕПЛОВОЗ, ПОЙМАЛ, ПАРАД, КОРАБЛИК. Проще всего построить решение, имея в виду, что все предлоги и союзы тоже являются словами русского языка.

Задача 109. В этой задаче дети узнают, что склеивать можно не только две, но и любое число цепочек. Несмотря на простоту задачи, проследите, чтобы все дети с ней справились — в дальнейшем ребят ожидает ещё много задач на одновременное склеивание нескольких цепочек.

Задача 110. Задача представляет собой комбинацию двух типов задач, с которыми ребята по отдельности уже встречались. Первый — вписать в программу пропущенные команды, когда начальная позиция и позиция Робика после выполнения программы известны. Второй — найти начальное и конечное положения Робика на поле, если даны программа и её результат. Здесь учащимся предстоит сделать и то и другое. Прежде всего стоит определить начальное положение Робика на поле. Это можно сделать разумным перебором, ставя Робика в любую закрашенную клетку и начиная выполнять команды. Оказывается, не выходя за пределы закрашенных клеток, три начальные команды программы можно выполнить только из одной клетки. Теперь уже нетрудно восстановить пропущенные команды — влево, влево. Лучше всего по окончании этой работы ещё раз проверить себя — выполнить получившуюся программу из найденного начального положения на запасном поле из листа вырезания. Проконтролируйте также, чтобы ребята не забыли отметить положение Робика на поле до и после выполнения программы.

Решение задачи:

Задача 111. По сути, это задача, обратная задаче 109. Здесь нужно выполнить «разрезание» цепочки на три части так, чтобы получившиеся цепочки удовлетворяли некоторым условиям. Первое задание выполнить проще. Для этого достаточно посчитать число букв в слове КАНАРЕЙКА и разделить его на три. Второе задание можно выполнить с помощью несложных рассуждений или перебора. Большинство детей справится с этим заданием с помощью хаотичного просматривания или простого угадывания.

Задача 112 (необязательная). При решении задачи можно применить обычную тактику — перебирать все возможные пары фигурок, каждый раз проверяя, можно ли из одной фигурки сделать другую, раскрасив лишь один квадратик. Однако условие задачи подводит к идее, позволяющей существенно уменьшить перебор. То, что нужно закрасить лишь в одной фигурке один квадратик, подсказывает использовать в решении инвариант — число квадратиков, закрашенных в фигурках. Число закрашенных квадратиков в фигурках соответственно равно 8, 6, 8, 8, 7 и 9 (перечисляем фигурки слева направо). Исходя из этого, можно существенно сократить количество рассматриваемых вариантов.

Ответ: нужно в пятой (считая слева) фигурке закрасить верхний левый угол в жёлтый цвет, и она станет такой же, как третья.

Задача 113. Задача даёт возможность сформировать у детей понимание того, откуда в дереве берутся одинаковые пути. Путь — это цепочка, значит, нужно найти две одинаковые цепочки. Задачу можно решить, сравнивая каждую цепочку с каждой, но в случае, если цепочки — пути одного дерева, у такого перебора появляются свои особенности. Скорее всего, ребята начнут хаотично сравнивать пути, проглядывая дерево слева направо, сверху вниз и т. п. Однако в ходе такой работы у детей постепенно начнёт формироваться понимание, где и что нужно искать (а также где искать не нужно). Во-первых, станет ясно, что одинаковыми могут быть лишь те пути, которые выходят из одной корневой вершины или из двух одинаковых корневых вершин. Например, нет смысла сравнивать крайний правый путь и крайний левый: ведь уже первые вершины этих цепочек разные. Таким образом, дерево К можно разделить на две части и искать пары одинаковых путей в каждой части отдельно. Одинаковые пути могут выходить из синей квадратной бусины или из двух оставшихся одинаковых треугольных синих бусин. Это облегчает задачу — из большого дерева мы получили два небольших. Искать стало проще.

Если возникнет вопрос, как пометить два одинаковых пути, попросите сделать это так же, как в задаче 107.

Задача имеет два решения: два пути, которые соответствуют красным круглым бусинам-листьям шестого уровня: пятой и восьмой слева и два пути, которые соответствуют красным круглым бусинам шестого уровня: второй и третьей слева.

Задача 114 (необязательная). Предоставьте ребятам возможность самостоятельно найти для себя подсказку: латинский алфавит есть в учебнике на второй странице обложки. Формирование умения сориентироваться и найти необходимую информацию — одна из основных задач курса, даже если ребята работают пока в пределах одного учебника.

Ответ: истинные утверждения — третье и пятое, остальные ложные.

Задача 115 (необязательная). Задача на повторение листа определений «Цепочка цепочек». Некоторую трудность может вызвать третье утверждение (в совокупности со вторым): ребята, скорее всего, просто не задумывались над тем, что пустая цепочка тоже может быть словом, в котором нет ни одной буквы.

Компьютерный проект «Определение дерева по веточкам и почкам» (только для компьютерного варианта изучения курса)

Практическая цель проекта — определение названия дерева по побегу в осенне-зимний период с помощью электронного определителя.

Методическая цель проекта — обучение использованию бинарного дерева для классификации видов растений, продолжение обучения поиску объекта по описанию, знакомство с биологическими понятиями на основе информатических (формальных) критериев.

О проекте

В этом проекте задача ребят — правильно определить название дерева (кустарника), которое они выбрали для работы. Конечно, дети должны выбирать дерево/куст, название которого им не известно, иначе работать в этом проекте будет просто неинтересно. Для работы в этом проекте мы предлагаем соответствующий ресурс — компьютерный определитель дерева. Принцип деления на каждом этапе работы с этим определителем дихотомический. Это означает, что на каждом шаге, отвечая на вопрос «да» или «нет», ребёнок постепенно сужает круг подходящих растений и в результате получает одно растение, соответствующее именно такому набору признаков. Определитель выдаёт ребёнку название растения и изображение его внешнего вида (для сравнения). Такой дихотомический принцип построения дерева с точки зрения информатики для нас очень важен, поскольку он соответствует бинарному дереву классификации. Таким образом, ребёнок в процессе своей работы движется по некоторому пути бинарного дерева. Лист такого дерева — название дерева, а выбор следующей вершины дерева на каждом этапе продиктован ответом на вопрос определителя «да» или «нет».

Для этого проекта дети могут выбрать растения только двух видов — деревья и кусты. Вряд ли детям перед началом проекта нужно будет объяснять, что такое дерево, все это наверняка знают. Что касается кустов, здесь нужно пояснить ребятам, что сюда входят три вида растений — кустарники, кустарнички и древовидные лианы. Кустарнички отличаются от кустарников в основном размером (они обычно меньше), продолжительностью жизни и немного характером ветвления. Детям будет достаточно указать, что в число кустарничков входят небольшие растения, например черника. Под древовидными лианами стоит понимать такие виды кустарников, которые растут, оплетая некоторую опору (дерево, веревку и т. д.) с помощью специальных отростков.

Перед началом работы в проекте от детей понадобится некоторая предварительная подготовка. Во-первых, они должны выбрать неизвестное им растение — дерево или куст. Во-вторых, нужно аккуратно срезать с выбранного растения молодой побег. На таком побеге должны быть хорошо видны почки (верхушечная и боковые), а также поперечный срез (некоторые вопросы определителя касаются внешнего вида среза). В-третьих, нужно сфотографировать дерево целиком и один из старых побегов — веток, возраст которых не меньше года. Это может быть ветка, которая отходит непосредственно от ствола. Мы советуем детям выбрать для наблюдения не одно, а два растения. С одной стороны, в вашем классе наверняка найдутся очень быстрые дети, которые определят название растения очень быстро, и необходимо будет загрузить их работой. С другой стороны, предлагаемый определитель хоть и включает в себя большинство деревьев/кустов, произрастающих в нашей полосе (около 80%), но нет гарантии, что ребёнок не отыщет именно такого дерева, которого в определителе нет. Чтобы ученик не оказался в тупике, лучше иметь запасной вариант. Наконец, может получиться такая ситуация, что ребёнок некачественно срезал побег или сделал фото и не может по своим данным ответить на один из вопросов определителя. Для таких случаев тоже лучше иметь запасной вариант.

Работа с определителем

Скорее всего, практическую задачу проекта вам пришлось частично объяснить, когда вы давали детям домашнее задание на этот урок, чтобы они правильно выбрали дерево для работы. Если нет, как всегда, стоит начать проект с постановки практической задачи. После этого попросите детей открыть компьютерный ресурс к данному проекту.

Обратите внимание ребят, что на первой странице определителя находятся основные биологические понятия, которые им могут пригодиться при ответах на вопросы определителя (побег, почка, супротивные почки, очередные почки и т. д.). Следует перед началом работы посоветовать ребятам просмотреть основные понятия, большинство которых разъясняется не словесно, а графически, то есть так, как показано на рисунках. Затем ребята начинают отвечать на вопросы определителя (да/нет), двигаясь от одного ветвления к другому. Если вопрос достаточно простой и не включает не знакомое детям биологическое понятие, то после него сразу идут два ответа «да/нет», из которых детям предстоит выбрать. После выбора некоторого ответа сразу появляется следующий вопрос и соответственно следующее ветвление дерева. Если вопрос имеет биологическую специфику и может быть понят ребёнком не до конца, то мы поддерживаем каждый из ответов графической иллюстрацией, то есть предлагаем ребёнку выбрать ответ не просто из словесных формулировок, но и из схематичных картинок. Таким образом, для каждого ответа «да»/«нет» нарисована картинка, подходящая к данному ответу. Эти две картинки ребёнок сопоставляет со своим побегом (или фото) и выбирает более похожую картинку и относящийся к ней ответ на вопрос.

После ответа на последний вопрос перед ребёнком появляется картинка, на которой изображён побег дерева и название растения. Картинка здесь дана для того, чтобы ребёнок мог сравнить, действительно ли речь идёт об этом растении. Как вы понимаете, дети не всегда правильно отвечают на вопросы определителя, поэтому если бы мы приводили в конце каждого пути только название растения, то невозможно было бы осуществить проверку и самопроверку правильности определения растения. Попросите детей на последнем этапе позвать вас и вместе проверить решение. Конечно, здесь могут быть разные варианты. Первый — картинка с растением действительно похожа на нужный побег и соответствующие фото. В этом случае вы с учеником удостоверились, что растение определено правильно, и ребёнок переходит к следующему этапу работы. Второй — картинка отличается от побега и фото ребёнка. В этом случае для начала предложите ученику снова поработать с определителем, начиная с первого вопроса, и не торопясь ответить на те же вопросы. Если после повторного определения у ребёнка получается тот же результат, советуем вам проделать эту работу вместе с ребёнком. При этом вы либо найдёте у ребёнка ошибку, то есть найдёте то место в определителе, где он отвечает на вопрос неверно, либо вместе убедитесь, что выбранного ребёнком растения в определителе просто нет, поэтому, отвечая на вопросы правильно, он получает другое растение. Во втором случае ребёнку следует предложить поработать со вторым своим растением. В конце проекта каждый ученик должен получить вполне конкретный результат — выяснить название своего дерева или куста. Если у кого-то из ребят осталось много свободного времени, предложите ему определить название ещё одного дерева. Для этого стоит запастись некоторым числом запасных веточек или просто картинок с веточками.

Уроки «Все пути дерева»

Главное, что дети должны усвоить из данного листа определений, — как построить мешок всех путей дерева и при этом не потерять путей и не добавить лишних. На этом листе определений, в частности, обобщается тот опыт, который ребята получили в рамках предыдущей темы. К этому моменту у ребят (может быть, на интуитивном уровне) уже сформировалось представление о том, что каждый путь дерева соответствует тому листу дерева, в который он ведёт. На данном листе определений это представление облекается в словесную форму и получает своё дальнейшее развитие. В частности, из него следует, что путей в дереве ровно столько, сколько листьев. Это означает, что полный и исчерпывающий перебор путей легко организовать по листьям дерева. Это позволит не пропустить ни один путь и не выписать никакой путь дважды.

Как обычно, дети должны работать с листом определений самостоятельно. В ходе решения задач можно попросить ребят (либо при общем обсуждении, либо индивидуально) сформулировать, как построить все пути дерева — пусть сформулируют ответ в виде пошагового алгоритма, например такого:

1) взять лист дерева и пометить его галочкой (можно карандашом);

2) построить путь, ведущий в этот лист;

3) пометить лист жирной галочкой;

4) взять ещё не помеченный лист и т. д.

Решение задач 116—131 из учебника

Задача 116. Самый рациональный способ действия следующий. Находим непомеченный лист и, двигаясь от конца, выписываем путь, ведущий в него, затем помечаем этот лист, чтобы не выписать этот же путь ещё раз. Вместо пометок можно сразу соединять лист с соответствующим путём. Хорошо пользоваться некоторой системой движения по листьям, например перебирать их сверху вниз.

Ответ: ВАС, ВАША, ВЕК, ВЫ, ВОЛ.

Задача 117. Первая часть задания будет для детей не слишком сложной. К настоящему моменту дети должны хорошо представлять себе, в каких случаях в дереве появляются одинаковые пути. Ясно, что пути разной длины не могут быть одинаковыми, значит, надо рассматривать отдельно пути длины 3 и пути длины 4. Путей длины 3 в дереве пять, причём первая бусина у них общая. Надо постараться сделать разными вторые бусины, помня при этом, что по условию черный цвет использовать нельзя. В тех путях, где вторые бусины всё же окажутся одинаковыми, нужно обязательно сделать разными третьи бусины. Рассуждая аналогичным образом, раскрасим бусины в путях длины 4. При выполнении второй части задачи важно, чтобы все использовали способ действия, описанный в предыдущей задаче.

Задача 118. Эта задача имеет много ответов. Необходимо предоставить ребятам достаточно времени для самостоятельной работы. Если вы видите, что кто-то не знает, с чего начать, поговорите с ним о том, как он понимает, например, фразу «В дереве есть три пути длины 2». На самом деле это условие означает то же, что и «на втором уровне есть три листа». Когда ученик понял смысл всех условий, решение становится совсем простым. О путях длины 5 и 1 в задаче не сказано ничего, поэтому путей длины 1 в дереве может быть сколько угодно (в том числе не быть вовсе), а путей длины 5 должно быть не меньше одного (так как дерево имеет пять уровней бусин). Поскольку в условии не сказано ничего о форме и цвете бусин, бусины могут быть любыми.

Задача 119. Эта задача начинает новую серию задач — задач на работу с толковым словарём. В учебный толковый словарь, помещённый на с. 102, мы специально включили слова либо устаревшие, либо малоизвестные. Это сделано для того, чтобы при решении этих задач ребёнок не рассчитывал на свои знания, а был вынужден обращаться к словарю. Если кто-то скажет, что может выполнить отдельные фрагменты задания и без словаря, пусть так и сделает, а затем проверит по словарю правильность своего решения.

На первых порах детям предлагаются не слишком сложные варианты толкований, которые либо полностью совпадают с толкованиями словаря, либо, напротив, совершенно с ними не совпадают. Позднее, в основном в необязательных задачах, мы предложим детям и более сложные варианты толкований.

Задачи на работу с толковым словарём вносят некоторое разнообразие в задачи на логику, а кроме того, как всякие «словарные» задачи, закрепляют знание алфавитного порядка. Не менее важная цель такого рода задач — привить ребёнку привычку пользоваться толковым словарём, чтобы узнать значения незнакомых слов.

Ответ: второе утверждение ложно, остальные истинны.

Задача 120. Аналогичные задачи ребятам уже встречались, но впервые подобная задача предлагается как обязательная. Стратегии решения таких задач описаны в комментариях к задачам 92 и 101.

Решение задачи:

Задача 121 (необязательная). Самый прямой способ решения задачи — рассмотреть сначала первое утверждение и найти место для одной буквы К. Затем, пользуясь вторым утверждением, поместить букву О (перед К) и найти место для второй пары О — К. В оставшееся после этого пустое окно необходимо вставить букву О.

Ответ: ОКОРОК.

Задача 122 (необязательная). Сильный ребёнок на текущем этапе должен быть уже готов провести некоторые рассуждения, опираясь на два данных утверждения. Например, всего в цепочке восемь бусин, шесть из них синие, а две не синие (любого другого цвета). При этом синие бусины не могут стоять ни на первом, ни на втором месте, иначе первое утверждение не будет иметь смысла. Итак, с цветом определились. Пусть, например, первые две бусины красные, остальные, естественно, синие. Теперь разберёмся с формой. Какую форму должна иметь первая бусина цепочки? Конечно, круглую, ведь она вторая бусина перед синей. То же самое можно сказать про вторую, третью и другие бусины цепочки. Оказывается, что не обязаны быть круглыми только последние две бусины, они могут иметь любую форму. Самое простое — нарисовать восемь круглых бусин и начать их раскрашивать.

Задача 123. Если в задаче 72 детям пришлось решать задачу на сопоставление инструкции с множеством предполагаемых результатов её выполнения, то здесь имеем обратную задачу: надо сопоставить результат с возможными вариантами инструкции и выбрать подходящий.

Возможно, ребята будут выполнять инструкцию до конца с каждым пунктом, приведённым на листе вырезания. Не отговаривайте таких детей, но дайте им совет: можно подписывать цвета простым карандашом на бусинах первой цепочки и затем стирать. Так они затратят меньше времени и будет меньше грязи в тетради.

Ответ: «Раскрась предыдущую бусину перед каждой красной синим».

Задача 124. Детям, которые растерялись, задайте вопрос о том, где должны быть написаны самые короткие слова. С первого взгляда на мешок слов становится ясно, что корневая вершина дерева — буква Б. У неё три следующие, но и у слов в мешке на втором месте также стоят буквы Е, Л или У. Вопрос: какая буква должна стоять в какой вершине второго уровня? На этот вопрос легко ответить, сосчитав количество слов в мешке с каждой из имеющихся вторых букв. Аналогично можно продолжать рассуждения до тех пор, пока все окна в дереве не будут заполнены.

В заполнении окон дерева S есть некоторая вариативность. Например, слова БУНТ и БУРЯ можно поменять местами. Если кто-то заметит это и спросит, как лучше расставить слова в таких случаях, посоветуйте ставить буквы, следующие за каждой вершиной, в алфавитном порядке (сверху вниз). Мы почти всегда строим деревья букв в задачах именно так. Такая система, с одной стороны, дает единообразный подход к построению деревьев из букв, с другой стороны, позволяет не запутаться, если мы ведем перебор по буквам, и, наконец, в таком дереве гораздо проще ориентироваться. Этот приём — лишь одно из проявлений системного подхода, к которому мы хотим приучить и ребят. Поэтому старайтесь учить ребят при построении дерева из букв пользоваться алфавитным порядком.

Задача 125. Некоторые сложности могут быть связаны с толкованием третьего слова: «Депо — это место постройки и ремонта судов», так как внешне это толкование похоже на то, что написано в словаре. Можно спросить ребёнка, как называется место для постройки и ремонта судов (такое толкование можно найти в нашем словаре).

Ответ: первое и четвёртое утверждения истинны, остальные ложны.

Задача 126. В задаче нужно не полностью нарисовать мешок всех путей дерева Э, а лишь закончить раскраску его цепочек. Однако это не облегчает детям задачу, а только несколько изменяет её. Здесь нужно узнать каждый путь, установить соответствие между частично раскрашенными цепочками из мешка Ю и путями дерева Э. Пути в мешке расположены не на уровне соответствующих листьев, а в порядке возрастания числа бусин. Это дополнительно усложняет процесс узнавания. Такое расположение цепочек в мешке, скорее всего, подтолкнет ребят искать пути, ориентируясь на их длину. Сложнее будет с путями длины 3. Особенно сложной будет ситуация с цепочками 8, 9, 10 и 11, у которых не только одна длина, но и первые бусины одинаковы. Однако легко увидеть, что и они определяются по дереву однозначно. Работа с такой задачей будет не только сложной, но и увлекательной, поскольку она в некотором смысле напоминает игру («угадай», «узнай»). Последнее задание дано для проверки, но кому-то, возможно, захочется ставить имена цепочек по ходу решения задачи. В этом случае число вариантов путей, из которых выбирает ребёнок, будет постепенно уменьшаться: ведь на пути, около которых поставлено имя, можно уже не смотреть.

Задача 127 (необязательная). Задача довольно объёмная — нужно построить дерево из 15 данных в мешке бусин. Самый простой способ начать строить дерево, удовлетворяющее условию, — выпустить из корня пять цепочек длины 3. Приступим к выписыванию этих цепочек. Будем помещать в них по две одинаковые бусины, а третью — какую придется. Для этого нужно сразу выделить пять пар одинаковых бусин, а остальные добавлять по одной, чтобы получились нужные тройки бусин. В этой задаче полезно ещё раз вспомнить, что выражение «есть две одинаковые бусины» не означает, что в цепочке нет и третьей, такой же, как эти две.

Задача 128. Полный анализ всех программ и возможных начальных положений Робика достаточно трудоёмок. Поэтому лучше сначала отсеять какие-то программы, которые точно не подходят, и потом уже рассматривать только оставшиеся.

Приведём соображения, показывающие, что некоторые программы не годятся. В первой программе Робик четыре раза поднимается вверх — ему просто не хватит места на поле. Для второй программы есть только одна клетка, из которой Робик может выполнить команды вправо, влево и вниз, — третья слева в верхнем ряду. Выполняем программу, начиная с этой клетки, и видим, что рисунок, закрашенный Робиком, не совпадает с данным в задаче. В третьей программе есть подряд три команды вниз, значит, после их выполнения Робик может находиться только в нижней строке, в третьей клетке слева (если, конечно, Робик ещё раньше не вышел за пределы закрашенных клеток). Но если из этой клетки выполнить оставшиеся команды, то данный рисунок уже не получится. Пятая программа не подходит, так как в ней есть подряд две команды влево (в пределах закрашенного рисунка их выполнить нельзя), и т. д. Анализируя шестую программу, выясняем, что есть ровно две клетки, из которых можно выполнить первые три команды (влево, вправо, вверх). Из одной из этих клеток выполнить программу вообще не удаётся, из второй получается другой узор. Оказывается, что только четвёртая программа подходит, если начать её выполнять в клетке второго ряда снизу. Детям, которые затрудняются в таких устных рассуждениях, предложите начать выполнять каждую из программ на листе в клетку, а дальше всё будет видно.

Задача 129 (необязательная). У задачи имеется стандартное решение. Оно состоит в том, что рисуется красная круглая бусина, следом за ней — синяя квадратная (по первому условию), затем — красная круглая и т. д. Двадцатая бусина оказывается синей квадратной. Проверяем: оба условия выполнены. Заметим два обстоятельства. Первое: если начать строить цепочку с синей квадратной бусины, то построение невозможно, поскольку после последней красной круглой бусины ничего не идёт. Второе: мы можем начать цепочку с любого числа бусин, отличных от красной круглой и синей квадратной, и только потом приступить к описанному выше чередованию. Если это обстоятельство будет обнаружено кем-то из учеников, стоит его подробно обсудить. Такое обсуждение в силу его важности может быть проведено и по вашей инициативе. Наконец, необходимо иметь в виду, что в цепочке должна быть хотя бы одна красная круглая и хотя бы одна синяя квадратная бусины, иначе данные утверждения не будут иметь смысла.

Задача 130 (необязательная). Первый шаг состоит в том, чтобы понять, что сначала необходимо использовать утверждения, а уже потом таблицу. Начать можно с любого утверждения, поскольку они независимы друг от друга (ни по форме бусин, ни по цвету). И всё же в задаче существует один скрытый сложный момент. Утверждения относятся к путям, т. е. отдельным цепочкам, а работаем мы с деревом. Поэтому от ребёнка требуются одновременно умение «выделять» пути в дереве и умение «собирать» из путей дерево. В этом плане особую сложность представляет второе утверждение. Действительно, берём любую квадратную бусину, например ту, что в центре второго уровня. Она одна, но путей, проходящих через нее, три. В каждой из этих цепочек существует собственная вторая после этой квадратной, и каждую из них мы должны раскрасить красным цветом. В ходе работы с утверждениями мы раскрашиваем 5 красных и 5 зелёных бусин, положение которых определяется однозначно. Теперь, используя таблицу, можно раскрасить остальные бусины.

Задача 131 (необязательная). Требуется определить истинность утверждений, включающих конструкции «перед каждой бусиной» и «после каждой бусины». Эта задача содержит несколько интересных и сложных моментов. Во-первых, некоторые утверждения не имеют смысла. Например, второе утверждение для цепочек Б и В не имеет смысла, поскольку у первой жёлтой бусины нет предыдущей, а последнее утверждение не имеет смысла для цепочки В, так как в ней вообще нет красных бусин.

Во-вторых, по форме соответствующие бусины этих трёх цепочек одинаковы (если бы все бусины были, например, красные, то у нас были бы три одинаковые цепочки). Эту особенность можно использовать в решении. В таблице есть утверждения, которые относятся только к форме бусин, например третье и пятое. Значения истинности таких утверждений для всех данных цепочек будут одинаковыми.

В-третьих, данная задача — хороший повод обратить внимание детей на отличие конструкции «после каждой бусины» от конструкции «перед каждой бусиной». До решения задачи спросите детей, отличаются ли первое и четвёртое утверждения по смыслу. Наверняка некоторые ученики скажут, что в этих утверждениях говорится об одном и том же, что здесь конструкции «перед каждой» и «после каждой» взаимозаменяемы. Решив задачу, можно убедиться в ошибочности данного представления. После того как все высказались, постарайтесь ничего не комментировать, а предложите обратиться к задаче. По окончании решения можно продолжить разговор. Становится ясно, что первое и четвёртое утверждения не могут совпадать по содержанию, поскольку первое для всех трёх цепочек истинно, а четвёртое принимает разные значения. С сильными ребятами можно обсудить, почему так получается. Все перечисленные выше особенности лучше обсуждать по окончании решения. Если ребята предварительно самостоятельно поработают с задачей, то разговор получится более продуктивным.

Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 8 9 10

pandia.ru

Информационные знаки на упаковке

  • /
  • Полезно знать /
  • Информационные знаки на упаковке
13:29:05 - 13.07.2019

___________________

Специальные символы которые наносятся на упаковочный материал в различных ситуациях

Ростест Ростест — этот значок размещается на вкладыше, который создается для импортируемого товара и является свидетельством того, что данный товар имеет сертификаты, которые соответствуют российским нормам.
Вес НЕТТО Этот простой символ, ставится обычно около обозначения веса товара и обозначает его вес без тары. Бывает, что рядом стоит число в рамке. Вот оно говорит о том, что данный товар имеет такой вес вместе с тарой (вес брутто). Это международный знак, который можно встретить на многих упаковках.
Не мусорить! Этот значок каждый расшифровывает по-своему, но, скорее всего, он обозначает то, что упаковку от этого товара можно выбрасывать в обычный мусоропровод. Иногда такие метки стоят в общественных местах и призывают людей не мусорить и уважать труд уборщиц. Что же делать если значок имеется, а урны рядом нет? Все зависит от порядочности человека.
Безвредный материал Безвредный материал — данный символ часто можно увидеть на продукции из пластика. В этом случае говорят, что данному товару можно прикасаться к пищевым продуктам, мол, он не токсичен. Иногда его ставят на бытовую технику или на упаковку для продуктов питания.
Внимание! Хрупкое! Здесь трудно что-то добавить. Просто если на упаковке стоит данный значок, то с товаром нужно обращаться так, как будто там находится хрусталь. В Советском Союзе данный знак можно было встретить под 14192-96 ГОСТом.
Боится влаги Означает лишь одно, что эта продукция может храниться и использоваться только в сухом месте. Он тоже имел такой же 14192-96 ГОСТ.
Верх Каждая страна имеет свое произношение этого слова, хотя обозначает одно — здесь находится верх товара. В ГОСТе 14192-96 Советского Союза он так же обозначался словом «верх»
Не нагревать Такой значок тоже можно встретить в ГОСТах бывшего Союза. Он означает только одно, что товар не переносит жару.
Соблюдай температурный режим! Возле данного символа всегда рядом указывается температурный предел.
Защищать от излучения! Без комментариев.
Тропическая упаковка Знак наносят на грузы, которые могут испортиться при повреждении упаковки, вследствие тропического климата. Буква «Т» означает — тропики, цифрами обозначают месяц и дату упаковки.
Центр тяжести Означает, что здесь находиться центр тяжести. Наносят обычно тогда, когда центр тяжести груза отличается от геометрического центра тяжести. Наносится на соседние (т.е. на боковую и торцевую) поверхности.
Содержит кислоту! Груз содержит кислоту. Соблюдать меры предосторожности. Перед работой с грузом повторить требования безопасности при работе с кислотами.
Осторожно! Нужна специальная утилизация! Запрещено выбрасывать данный предмет. Требуется специальная утилизация. В инструкции по применению или в сопроводительной инструкции дано описание по безопасной утилизации. Чаще всего его можно встретить на аккумуляторах. Так же на любых других предметах, где содержатся опасные
Беречь от огня! Легко возгораемые грузы. Чаще всего это горюче смазочные материалы, газы, взрывчатые вещества и т.п.
Место строповки Данный символ наносится на упаковку в определенных местах и только в том случае, когда при перевозке этого товара захватывать его нужно только в определенных местах, по этим меткам должны проходить цепи или стропы. Наносят с двух противоположных сторон. На неупакованные грузы разрешается наносить на ярлыки или прямо на груз.
Не цеплять! Присутствует на таре, когда товар находится в мягкой упаковке и запрещает подцеплять груз крюками или другими острыми приспособлениями.
Беречь от солнца Свидетельствует о том, что товар необходимо беречь от прямых солнечных лучей.
Беречь от солнечной радиации. Этот символ говорит о том, что груз может придти в негодность, если в него проникнет тепло или радиационное излучение.
Герметичная упаковка Сигнал о том, что тара герметична и при хранении товара или во время перевозки ни в коем случае нельзя ее нарушать.
Не укладывать штабелями Если на товаре стоит данный знак, то это означает, что на него ничего нельзя ставить.
Открывать здесь! Если на упаковке товара имеется такой знак, то открывать ее необходимо только в этом месте.
Скоропортящийся груз Груз при транспортировке необходимо или не нагревать, или не охлаждать. В любом случае скоропортящийся груз необходимо перевозить соблюдая инструкции соответствующих министерств или производителей.
Здесь поднимать тележкой запрещено Знак наносится в том месте, где есть возможность поднять груз тележкой, но делать этого нельзя, ввиду возможного повреждения груза. Необходимо использовать тележку в другом месте для подъема, или использовать другой способ подъема.
Поднимать непосредственно за груз Данный знак обозначает, что подъем необходимо производить непосредственно за груз. Поднимать за упаковку запрещено, т.к. это приведет к ее повреждению.
Не катить/Не кантовать Запрещается катить или кантовать груз.
Штабелирование ограничено по массе Штабелировать груз разрешается не превышая предельно допустимую массу. При этом необходимо
Груз зажимать здесь Данный знак указывает место, где груз необходимо брать зажимами.
Не зажимать Зажимами брать запрещено. Зажимать можно только стороны, на которые нанесен знак «Зажимать здесь»
Ограничение по количеству ярусов штабелей Штабелировать данный груз разрешено только в строго определенном количестве ярусов.
Запрещено использовать вилочный погрузчик Не разрешается использовать вилочные погрузчики
Книга с рукой Символ: «Открытый учебник», где рука указывает пальцем на страницу, сообщает о том, что под данной упаковкой имеется вкладыш, который содержит более полные сведения о товаре: подробное описание, способы применения, а при необходимости и технику безопасности. Следует иметь в виду, что если данный значок стоит, а вкладыш с аннотацией отсутствует или имеется, но на иностранном языке, то в интернете существует сайт Mary Kay Online, где в разделе «Вкладыши на продукцию», можно найти нужную информацию.
«Der Grune Punkt» — «Зеленая Точка» Перевод данного символа с немецкого звучит как «Зеленая точка». Имеется довольно устоявшееся суждение, мол, этот знак говорит о том, что в товаре или какой-то его части применяются уже использованные материалы, либо о том, что данный продукт подлежит переработке. Это не совсем так. Метка «Зеленая точка» на упаковочном материале германских компаний указывает на то, что эти компании готовы профинансировать переработку некоторых отходов. А также то, что их продукция тоже может утилизироваться, согласно программе«Eco Emballage» (эко упаковка). Следовательно, во всех остальных странах, кроме Германии, данный символ не имеет никакого значения. Выполняют этот символ в трех вариантах: зелено-белом, черно-белом и разными оттенками зеленого.
Символ«Свободно от хлора» Символ «Свободно от хлора» — говорит о том, что хлор в данной продукции отсутствует, а также о том, что ни он, ни различные соединения с хлором не применялись при обработке или переработке материалов при изготовлении этого товара.
«Яблочко» Эта эмблема свидетельствует о безопасности. Если данный знак стоит на продуктах, то это говорит о полном отсутствии в них канцерогенов, которые могут вызвать онкозаболевания у людей. А еще он свидетельствует о тщательной проверке, которую провела Международная антираковая коалиция «CANCER PREVENTION COALITION». Именно это и является гарантом того, что любой человек может употреблять данный продукт без опасений. Данную коалицию возглавляет доктор Самуэль Эпштейн, и она одна единственная, которая имеет право ставить данный знак.
Recycled Recycled — символ, который обозначает вторичную переработку. Условно, можно сказать, что товар или упаковка, имеющая этот знак, произведена из переработанного материала (например стрейч пленка ручная черная), ну или пригодна для переработки. Однако правильнее бы было производителям пояснять, какой процент уже вторичного материала входит в данный товар. Но этот контроль над установкой данного символа не ведет никакая организация, а, следовательно, его может ставить на свой товар кто угодно, поэтому на самом деле ничего особенного он не обозначает.
Кролик Символ, в котором в разных видах присутствует Кролик, указывает на то, что продукция не испытывается на животных, она тестируется на искусственно выращенной коже человека. Например, когда изготавливается пленка воздушно пузырьковая упаковочная звери не страдают: -)
«Вторичная переработка» Вторичная переработка. Символом вторичного использования пластика отмечаются изделия из этого материала, которые можно опять пускать на вторсырье. Он собой представляет треугольник с цифрой внутри. Эта цифра означает вид пластмассы, что значительно облегчает разделение по сортам. Иногда вместо цифр используется специальный код пластика. Он обычно выражается буквенным набором. Существуют специальные таблицы этих кодов. Вот основные из них:
PETE — Полиэтилентерфталат
HDPE — Полиэтилен высокой плотности
PVC ПВХ — Поливинилхлорид
LDPE — Полиэтилен низкой плотности
PP — Полипропилен
PS — Полистирол
Цифра 7 в треугольнике означает, что здесь используются другие типы пластика Другие типы пластика
MILJOMARKT –«Скандинавский Лебедь» Это экологический знак, который был введен в эксплуатацию в 1990 году странами Скандинавии (Норвегия, Швеция, Исландия и Финляндия). Он обладает сертификатом и указывает на полное соответствие данной продукции очень строгим скандинавским экологическим нормам и требованиям. Отмечать товар эмблемой MILJOMARKT можно только после разрешения особой межгосударственной комиссии (Nordic eco-labelling committee). Шведский Институт Стандартов (SIS — Swedish Standard Institution) — это основная компания, которая шефствует над этим символом.
«ЭкоЛейбл» Европейского Сообщества  Eco Label — ЭкоЛейбл Этот символ появился недавно, его принято считать экологической эмблемой Европейского сообщества.
«Green Seal» — дословно переводится как «Зеленая Печать» «Зеленая печать» тоже является новым экологическим символом Европейского сообщества.
KRAV Природоохранный символ Швеции, который в основном можно увидеть на продуктах питания. Выдавать его имеет право Шведское Общество Контроля Сельхозпродукции (Kontrollfцreningen fцr ekologisk odling). Применяется в большинстве случаев для продуктов растительного происхождения и символизирует о том, что растения произрастали естественным способом, без применения пестицидов и химических удобрений. Для продуктов, имеющих животное происхождение, имеются немного другие обозначения. Данный символ может стоять на продуктах, которые к Швеции не имеют никакого отношения, например, на кофе, фруктах или чае.
Good Environmental Choice —«Экологический Выбор» (Швеция) Good Environmental Choice — «Экологический Выбор» (Швеция). Этот значок означает специальное разрешение, которое вручает Шведское Общество Защиты Природы (Swedish Society for Nature Conservation) той части продукции, которая соответствует экологическим нормативам. Проще говоря, товар, имеющий этот знак, не загрязняет окружающую территорию ни в ходе производства и применения, ни в процессе утилизации или переработки, потому что в нем отсутствуют опасные вещества. Товары, которые претендуют на данный символ, делятся на специальные группы, к каждой из которых предъявляется свой список требований. Символ действует с 1992 года и внешне напоминает сокола в круге.
Fairtrade (Честная торговля) Товары, на которых есть обозначение Fairtrade (Честная торговля) — достаточно молодой символ европейской группы «Fairtrade». Он гарантирует правовое обеспечение тем, кто производит товар, а также правильную оплату труда и благоприятную окружающую обстановку. В большинстве случаев этим символом выделяются те продукты, которые изготавливаются при помощи ручного труда.
CFC Free CFC Free – это небольшая группа символов, которые ставятся на аэрозольных средствах, на бытовой технике и некоторых других товарах. Они «говорят» о том, что в данной продукции нет фреона.
Маркировка продуктов, употребляемых в пищу Сведения о том, что данная продукция натуральная и имеет органические источники возникновения, а также выращенная в условиях без химического вмешательства и при ее производстве не использовались различные добавки и даже пищевые красители, содержится в данной группе маркировок
Не содержит ГМО! Если продукция промаркирована «Не содержит ГМО», то это говорит о том, что товар прошел проверку правительства Москвы на содержание чужеродных ДНК, а попросту трансгенов.
«Без трансгенов» Иногда в России еще можно встретить другой символ «Без трансгенов»
Dolphin-friendly    Знаком «Dolphin-friendly» маркируются консервы, морепродукты и рыба — это заявление о том, что данные продукты не были получены при помощи дрифтерных сетей.

________________

Возврат к списку

cpereezd.ru


Смотрите также